The University of Chicago Robust Mixing a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science by Murali Krishnan Ganapathy
ثبت نشده
چکیده
How many times should a card shuffler shuffle to get the cards shuffled? Convergence rate questions like these are central to the theory of finite Markov Chains and arise in diverse fields including Physics, Computer Science as well as Biology. This thesis introduces two new approaches to estimating mixing times: robust mixing time of a Markov Chain and Markovian product of Markov Chains. The “robust mixing time” of a Markov Chain is the notion of mixing time which results when the steps of the Markov Chain are interleaved with that of an oblivious adversary under reasonable assumptions on the intervening steps. We develop the basic theory of robust mixing and use it to give a simpler proof of the limitations of reversible liftings of a Markov Chain due to Chen, Lovász, and Pak (1999). We also use this framework to improve the mixing time estimate of the random-to-cyclic transposition process (a non-Markovian process) given by Peres and Revelle (2004). The “Markovian product” of Markov Chains is like the direct product, except for a controlling Markov Chain which helps decide which component should be updated. Direct products as well as wreath products of Markov Chains are special cases. We show how a coupon collector type of analysis can be used to estimate the mixing times of these product chains under various distance measures. Using this, we derive L-mixing time estimates of a Cayley walk on Complete Monomial Groups, which are
منابع مشابه
The University of Chicago Robust Mixing a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science by Murali Krishnan Ganapathy
How many times should a card shuffler shuffle to get the cards shuffled? Convergence rate questions like these are central to the theory of finite Markov Chains and arise in diverse fields including Physics, Computer Science as well as Biology. This thesis introduces two new approaches to estimating mixing times: robust mixing time of a Markov Chain and Markovian product of Markov Chains. The “...
متن کاملThe University of Chicago Self-adjusting Machines a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science by Matthew Arthur Hammer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
متن کاملThe University of Chicago Stable Algorithms and Kinetic Mesh Refinement a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science By
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
متن کاملThe University of Chicago Testing Isomorphism of Combinatorial and Algebraic Structures a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science By
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
متن کاملThe University of Chicago Structure, Automorphisms, and Isomorphisms of Regular Combinatorial Objects a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Mathematics by John Wilmes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
متن کامل